IOWA STATE UNIVERSITY

Augmented Reality Monitoring System

Team Information

Client **Optical Operations LLC**

Team Members

Sam Altier
Nipun Dayanath
Arbaaz Khan
Ben Meis
Patrick Mosebach

	-		
acult	VIS	ors	5

Johnny Wong, Professor Goce Trajcevski, Associate Professor

Design

Original Design

• Camera & Gimbal Unit

Dheeraj Nalluri dnalluri@iastate.edu SE

altier@iastate.edu

Introduction

Motivation

- Companies are investing in monitoring workplaces and operations to improve safety and efficiency
- Industry wants to reduce insurance premiums by increasing safety and awareness of projects
- Augmented reality is a up and coming technology used to view 3D spaces in real time
- There is interest in the industry for an application that monitors confined work areas and this project aims at providing a solution to that problem

Intended Uses

- Construction Companies
 - Cranes
 - Bulldozer
 - Trucks
- Farm Industry • Autonomous Tractors

Figure 1 - Quarry mining site

Figure 4 - Comparison of overall system between project outset and project close

Rationale for Design Change

- Original design included a camera/gimbal component included in the solution
- The camera would be used to stream video to the hololens application
- Camera/gimbal feature was left out because client prioritized other features

• Ag Robots

Intended Users

Supervisors of projects where heavy machinery is used in a confined location

- Supervisors
- Civil Engineers
- Project Managers
- Insurance companies

Objectives

Overall Objective

- Provide a solution to remotely track and monitor worksites with vehicle activities
- Give managers easy access to data relevant to each vehicle
 - Speed
 - RPM
 - Throttle
 - Location
- Provide a remote solution that can be placed inside the cab of most vehicles
- Create an application solution that displays a worksite in real-time

HoloLens

Future Work

Further Work in This Application:

- Better Hololens Support
- User Login
- User Interface
- Addition of Video Monitoring via Camera and Gimbal

Future Applications In:

- Sporting Events
 - Nascar
 - **F1**
- Real Time War Visualization
 - UAZ
 - Military Compounds

Glossary and Technologies Used

Technologies

- Raspberry PI CAN Bus • GPS
- Redis

- Receive CAN Bus data from server and display in GUI
- Place realistic map on table
- Display and update position and direction of vehicles in real-time

Raspberry Pi

- Collect GPS data from GPS receiver
- Collect basic CAN Bus data from the vehicle CAN Bus network
- Transmit collected GPS and CAN Bus data to server

Server

- Receive incoming data from Raspberry Pls
- Forward received data to HoloLens when requested

Figure 2 - Original application demo

Figure 3 - Vehicle cabin setup

- Microsoft HoloLens
- C++
- C#
- Python

 Swig • Unity • Vuforia

Figure 5 - Microsoft Hololens

Terminology

- AR Augmented Reality
- CAN Bus (Controller Area Network Bus) this is the bus system over which networked components in a vehicle communicate
- Gimbal a pivoted support providing rotation about a number of axes
- Raspberry PI A small single-board computer
- Redis An open source database API
- Swig Development tool that rewrites C and C++ into a variety of high-level programming languages